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Abstract. A statistical modeling approach is proposed for the simulation of local 
paleoclimatic proxy records using general circulation model (GCM) output. A method for 
model-consistent statistical downscaling to local weather conditions is developed which can 
be used as input for process-based proxy models in order to investigate to what extent 
climate variability obtained from proxy data can be represented by a GCM, and whether, for 
example, the response of glaciers to climatic change can be reproduced. Downscaling is 
based on a multiple linear forward regression model using daily sets of operational weather 
station data and large-scale predictors at various pressure levels obtained from reanalyses of 
the European Centre for Medium-Range Weather Forecasts. Composition and relative 
impact of predictors vary significantly for individual stations within the area of 
investigation. Owing to a strong dependence on individual synoptic-scale patterns, daily 
data give the highest performance which can be further increased by developing 
seasonal-specific relationships. The model is applied to a long integration of a GCM 
coupled to a mixed layer ocean (ECHAM4/MLO) simulating present-day and preindustrial 
climate variability. Patterns of variability are realistically simulated compared to observed 
station data within an area of Norway for the period 1868-1993. 

1. Introduction 

Understanding spatiotemporal patterns and mechanisms of 
natural climate variability, as well as the anthropogenic 
impact on climate, requires the extension of instrumental 
records further back in time by the usage of paleoclimatic 
proxy data. Several attempts to reconstruct reliable 
temperature patterns over the last few centuries have been 
made [e.g., Landsberg et al., 1978; Groveman and Landsberg, 
1979; Bradley and Jones, 1993; Barnett et al., 1996; Bradley, 
1996; Mann et al., 1998]. Proxy records obtained from ice 
cores [e.g., Thompson, 1982], tree tings [e.g., Briffa et al., 
1992] and corals [e.g., Dunbar et al., 1994], as well as 
historical data [e.g., Pfister, 1992] and long instrumental 
records [e.g., Jones and Bradley, 1992] have been used to 
reconstruct large-scale or global-scale patterns. Valley 
glaciers [e.g., Oerlemans, 1992, 1997] can also provide 
important information on the evolution of the regional or 
local climate. 

How can these proxy data best be interpreted and what are 
the underlying forcing mechanisms? Recent interpretation 
studies [Mann et al., 1998] have investigated the influence of 
external forcings, such as solar irradiance variations and 
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explosive volcanism on Northem Hemispheric temperature 
variations. General circulation models (GCMs) [e.g., 
Roeckner et al., 1996; Manabe and Stouffer, 1996] integrated 
over a long period of time could contribute as they are an 
important tool for analyzing mechanisms underlying the 
climate system behavior and the role of forcing factors. 
However, a different methodology for a systematic evaluation 
of paleoclimatic proxy data is then required as will be 
proposed in this paper. 

The question we would like to address is whether we are 
able to simulate "synthetic" paleoclimatic proxy records from 
GCM output for comparison with actual in situ proxy data. 
Our strategy is to perform a model-consistent statistical 
downscaling of the output of a GCM combined with a 
process-based forward modeling approach to simulate, for 
example, the behavior of valley glaciers and the growth of 
trees under specific conditions. Simulated records can be 
compared to actual in situ proxy records in order to 
investigate whether, for example, the response of glaciers to 
climatic change can be reproduced by models, and to what 
extent climate variability obtained from proxy records (with 
the main focus on the last millennium) can be interpreted. 

The growth of a valley glacier is mainly controlled by local 
temperature and precipitation [Paterson, 1981; Oerlemans, 
1996]. Such data are very difficult to obtain from grid-point- 
scale GCM output because of very large deviations due to 
local orographic conditions. As will be shown in this paper, a 
careful statistical model derived from the present climate can 
provide reliable local data which can be used to force the 
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19,072 REICHERT ET AL.: PALEOCLIMATIC PROXY RECORDS FROM GCM OUTPUT 

growth of such a valley glacier. A similar downscaling 
approach is required, and can be developed, for the evaluation 
of dendrochronological data. 

One of the initial studies addressing the method of 
statistical downscaling is the work of Kim et al. [1984]. 
Monthly surface temperature and precipitation for stations in 
Oregon are analyzed for the purpose of relating their 
distributions to large-scale monthly anomalies. Downscaling 
is addressed here as "the statistical problem of climate 
inversion". Later, the approach is modified [Wigley et al., 
1990] and applied to predict meteorological variables for a 
number of selected sites in the United States [Karl et al., 
1990]. The method is used to predict regional precipitation 
changes over the Iberian peninsula [von Storch et al., 1993] 
and to downscale monthly mean North Atlantic air pressure to 
sea level anomalies in the Baltic Sea [Heyen et al., 1996] 
using monthly mean predictor data. A comparison of three 
methods of downscaling [Cubasch et al., 1996] shows that 
direct interpolation of GCM grid points gives a poor 
representation of the local climate and that statistical 
downscaling is an appropriate and inexpensive tool for 
regions with sufficient observational data to train the model. 
In a study by Martin et al. [ 1996], GCM output is downscaled 
to simulate the snow climatology of the French Alps based on 
an analog procedure which associates a real meteorological 
situation to model output. 

The method of statistical downscaling that is used in this 
study uses daily operational weather station data and a large 
set of potential large-scale predictors obtained from daily 
European Centre for Medium-Range Weather Forecasts 
(ECMWF) reanalyses [Gibson et al., 1997] in order to 
develop robust statistical relationships between the large-scale 
flow and local variables. Specific questions investigated in 
this study concem the role of near-surface predictors (section 
5.1) and the spatial homogeneity of the statistical model 
(section 5.3), as well as its performance on single seasons 
which are most important for a specific proxy indicator 
(section 5.4). Can we, for example, obtain from a GCM 
reliable local summer temperatures for the growing season of 
trees, and which predictors do we need in order to do so? 
Further questions concern the importance of horizontal GCM 
resolution and the time sampling for the determination of 
suitable predictors (section 5.6). It is found, for example, that 
daily data sets for the development of the statistical model 
give the closest and most robust relations due to a strong 
dependence on individual synoptic-scale patterns. 

2. General Strategy 

The general strategy proposed in this paper is the following 
(Figure 1). First we develop a statistical model between daily 
large-scale circulation pattems and corresponding local data 
observed by operational weather stations located near a proxy 
site to be investigated. Large-scale pattems are represented by 
daily ECMWF reanalyses (ERA) for the period 1979-1993. 
We use daily data in order to include synoptic timescale 
variability and to achieve physically robust relations (see 
section 5.6). The obtained statistical relationships are applied 
to the daily coarse spatial grid point output of a GCM in order 
to achieve local GCM output (statistical downscaling). A 
forward modeling approach for a specific proxy, for example, 
a glacier model [Oerlemans, 1996], can then be used to 
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Figure 1. General strategy for the interpretation and usage of 
in situ paleoclimatic proxy data as proposed in this paper. See 
text for further explanations. 

produce "synthetic" (paleoclimatic) proxy data which finally 
can be compared to actual in situ proxy data. 

3. Statistical Model 

The response of local weather to large-scale flow patterns 
of the atmosphere has been noted for a very long time, not 
only by meteorologists, but also by laymen interested in 
weather. The most common feature is perhaps the 
precipitation in mountainous regions which is particularly 
determined by orographic forcing, generating enhanced 
precipitation on the windward and reduced precipitation on 
the leeward side. In most areas the local conditions 

(topography and land surface characteristics) have a major 
effect not only on precipitation but also on wind and 
temperature as well as on cloudiness and visibility. Bergeron 
[1930] (see also Bengtsson [ 1981 ]) proposed that a special 
climatology should be established classifying local climate in 
terms of the large-scale flow. This approach may be identified 
as a dynamic climate classification. The significance of this 
approach became obvious as it became possible to predict the 
synoptic flow by numerical models. A dynamic climatology 
can be produced for any particular local weather parameter 
(predictand), for example, local precipitation, cloud cover, 
cloud height, visibility, and maximum or minimum 
temperature, by the use of different large-scale predictors, for 
example, surface pressure, wind, geopotential thickness, 
vertical velocity, and large-scale precipitation. 

For the purpose of this analysis we use a multiple linear 
forward regression model in order to establish relations 
between the large-scale flow and local weather parameters. 
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REICHERT ET AL.: PALEOCLIMATIC PROXY RECORDS FROM GCM OUTPUT 19,073 

For the i--1, 2 ..... n values of an observed (dependent) 
quantity y, (predictand) it takes the form of a linear 
combination 

y, = [30x, 0 + 13, x,, + •2xt2 q' ,.o q' •pXtp q' •t (1) 

where X,o--1 and x,•,x, 2 ..... x,• are the settings of the p 
corresponding (independent) quantities (predictors), 
130, 13• ..... 13• are the regression parameters which are to be 
estimated, and e, are unknown independent random errors 
(see, for example, von Storch and Zwiers [1999]). We use 
least squares estimation, which means that best estimates of 
the unknown regression parameters are calculated by 
minimizing 

•.n • 2 ,:, ; (2) 
for each predictand. 

However, it is neither necessary nor desirable to include all 
potential predictors in the data set for the prediction of a 
specific observed local variable. The maximum number of 
predictors that may be used in the model in order to get a 
"stable" solution which not only fits the developmental 
sample but also works on independent data sets is a function 
of the sample size. Furthermore, some predictors included in 
the model might be a linear or "near-linear" combination of 
other predictors (collinearity or "near-collinearity"). which 
could cause unstable results. In order to address these 

problems, we choose the following selection procedure for 
the large daily data set that is used in this study: The model is 
built up stepwise using an interactive forward selection 
procedure of independent variables. After having chosen a 
single predictor with maximum correlation, the next 
independent variable providing the best fit in conjunction 
with the first one is added and tested for near-collinearity. In a 
critical case the user may decide whether this variable should 
be included or not. Further variables are added in a recursive 

fashion until a saturation criterion (the correlation does not 
improve significantly) is reached. 

4. Data Sets: ECMWF Reanalyses and 
Observed Data 

The development of the statistical model is based on 
ECMWF reanalyses (ERA) [Gibson et al., 1997] used for an 
area of about 11 o x 11 o in Norway (covering the proxy site of 
Nigardsbreen glacier at 61ø43'N, 7ø08'E to be investigated) 
and On local observational records for 22 synoptic weather 
stations within that area. 

4.1. ECMWF Reanalyses (Predictors) 

The ECMWF reanalysis project has produced a validated 
and reasonably consistent global data set of assimilated data 
for the period 1979-1993 [Gibson et al., 1997]. In this study, 
ERA data constitute the potential predictors for the 
development of the statistical model. We use ERA 24 hour 
forecasts for precipitation in order to address the spin-up 
problem and to have a consistent picture of precipitation 
[Stendel and Arpe, 1997]. For all other surface and pressure 
level variables (Table 1), 6 hourly initialized analyses are 
taken and daily averaged. We extract pressure level variables 
on the 1000, 925,850, 700, 500, 400, and 300 hPa levels. 

Composite predictors (Table 1) are calculated directly from 
ERA data. "Geopotential a- b hPa" means geopotential 

Table 1. Large-Scale Predictors From ECMWF Reanalyses 

Predictor Type Predictors 

Pressure level predictors temperature*, dew point temperature*, 
(1000, 925,850', u wind velocity*, v wind velocity*, 
700', 500', 400', vertical velocity*, vorticity*, divergence*, 
300* hPa) geopotential height*, relative humidity* 

Surface predictors large-scale precipitation, convective 
precipitation, mean sea level pressure*, 
total cloud cover, total column water 

vapor 

Composite predictors•' geopotential thickness at 925-1000, 
850-1000,700-1000, 500-1000, 
500-850', 500-700' hPa, 

seasonal cycle: sin(day)*, seasonal 
cycle: cos(day)*, seasonal cycle: 
sin(2.day)*, seasonal cycle: cos(2.day)*, 
large-scale+convective precipitation, 
square root of total precipitation, 
vertically integrated liquid water, lapse 
rate of the lower troposphere (see text), 
K index [George, 1960] 

*The model version excluding near-surface predictors (see text) 
uses exclusively potential predictors on the 850, 700, 500, 400, and 
300 hPa levels, mean sea level pressure, geopotential thickness, and 
the "seasonal cycle" predictors (predictors marked with asterisks). 

•-See text for definition of composite predictors. 

height on level a minus geopotential height on level b 
(geopotential thickness). The four "seasonal cycle" functions 
are potential predictors to account for seasonal-specific 
features while establishing the statistical model between 
large-scale predictors and local observations. "Seasonal cycle: 
cos(day)" represents a cosine function with a period of 1 year. 
It is calculated for each day of the year and has a maximum 
(+ 1) at January 1 and a minimum (-1) at July 1. It is the most 
relevant "seasonal cycle" predictor for the statistical model. 
For the prediction of local temperature, it might be used in 
order to enhance or weaken the seasonal cycle that appears, 
for example, in the ERA large-scale 850 hPa temperature. 
"Seasonal cycle: sin(day)" is a sine function with a period of 
1 year and a maximum at April 1 and a minimum at October 
1. "Seasonal cycle: sin(2.day)" is a sine function with a period 
of half a year and maxima at February 15 and August 15 and 
minima at May 15 and November 15. "Seasonal cycle: 
cos(2.day)" is a cosine function with a period of half a year 
and maxima at January 1 and July 1 and minima at April 1 
and October 1. Further composite predictors are the sum of 
large-scale and convective precipitation in the ERA output 
(total precipitation), the square root of total precipitation, the 
vertically integrated liquid water content (total column water 
minus total column water vapor), the temperature lapse rate of 
the lower troposphere (linear regression between temperatures 
on the geopotential heights of the 1000, 925, 850, and 700 
hPa levels) and the K index as an atmospheric stability index 
[George, 1960]. 

Before applying ERA output to the statistical model, it is 
interpolated to T30 (-- 3.8 ø x 3.8 ø) resolution in order to meet 
the resolution of the European Center/Hamburg (ECHAM) 
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19,074 REICHERT ET AL.: PALEOCLIMATIC PROXY RECORDS FROM GCM OUTPUT 

GCM runs which we intend to use afterward. For each 

location of the operational weather stations we compute 
weighted area means for an area covering roughly 
1200 km x 1200 km (corresponding to nine grid points in T30 
resolution) as input for the statistical model. Additional 
experiments with original T106 (~ 1.1 ø x 1.1 ø) resolution of 
ERA output (using 16 grid points to cover the area of 
investigation) are also analyzed (see section 5.6). 

4.2. Observed Station Data (Predictands) 

The predictands (dependent variables) of the model consist 
of observational data for 22 operational weather stations (see 
Figure 2 for locations) in the vicinity of Nigardsbreen glacier, 
Norway. Most stations (exceptions: 02 Hustad-Nerland, 03 
Reimegrend, 08 Tynkrysset, 22 Eidfjord-Bu, 23 Sognefjell 
Mountain) cover the period 1979-1993. We interpolate 
missing values in the 6 hourly weather data before daily 
averaging. However, data quality is adequate for most stations 
in that period and only a few data are missing. Table 2 shows 
the observed parameters used as input for the statistical 
model. Composite predictands (Table 2) are logarithm, square 
root as well as cube and fourth root of observed 24 hour 

precipitation (prediction of local precipitation may be 
improved using these predictands), u wind and v wind 
components (calculated from wind direction and wind 

4' 5 • 6' 7' 8' 9' 10' 

Table 2. Predictands From Observed Weather Station Data 

Predictand Type Predictands 

Observed predictands 

Composite predictands-• 

pressure reduced, wind direction, wind 
velocity, temperature, dew point 
temperature, 24 hour precipitation, total 
cloud amount 

logarithm, square root, cube, and fourth 
root of 24 hour precipitation, u wind 
component, v wind component, relative 
humidity 

Results only for a selection of these parameters will be presented 
in this paper. 

?See text for definition of composite predictands. 

velocity), and relative humidity (calculated from temperature 
and dew point temperature). 

5. Results of Statistical Modeling 

The complete data set that can potentially enter the 
statistical model consists of daily values of 76 large-scale 
potential predictors from ECMWF reanalyses and 14 
observed local predictands for the period 1979-1993, which 
means about 5500 daily sets of 90 variables for each of the 22 
stations. 

63' 

60 e 

0 Height in rn 2500 

Figure 2. Location of operational weather stations used for 
development of the statistical model. We anticipate being able 
to provide reliable local outputs for the Nigardsbreen valley 
glacier (61 ø43%1, 7ø08'E). 

5.1. Role of Near-Surface Predictors 

In order to investigate the role of near-surface predictors 
for the statistical model, we choose two different model 
versions. In the first one, we allow all predictors (complete 
Table 1) to potentially enter the equations. The predictors 
which are finally selected by the model represent only a small 
subset of these variables; for local precipitation, for example, 
usually not more than five large-scale predictors play a 
significant role and are therefore actually used. In the second 
one we only use potential predictors above the 850 hPa level 
(850, 700, 500, 400, and 300 hPa), mean sea level pressure, 
and the seasonal cycle (noted by asterisks in Table 1). Here, 
near-surface predictors are excluded in order to be able to get 
stable results even when applying the model to various GCMs 
which might differ in the underlying topography and in the 
representation of surface processes. It is found that the 
correlation between observed and predicted variables in this 
model only slightly decreases compared to the first model 
version, which suggests that predictors above the 850 hPa 
level are already sufficient for the prediction of the desired 
local surface variables. The large-scale variability of the 
synoptic timescale flow is well determined from predictors 
above the 850 hPa level. 

5.2. General Model Performance 

Figures 3a - 3f show an example of statistical model output 
for the Norwegian station Kvamskogen (60ø24'N, 5ø55'E, 
408 m above sea level). Here, we perform the statistical 
model on a daily basis with reanalyses at T30 resolution 
including predictors above 850 hPa only (second model 
version) for the period 1979-1992. The shaded curves show 
large-scale direct reanalyses for the station without statistical 
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Figure 3. Results of the statistical model for station Kvamskogen (60ø24'N, 5ø55'E, 408 m above sea level, 
station 14 in Figure 2). Local output is shown for (a) daily precipitation, February 1 to March 19, 1980, (b) 
monthly precipitation, January 1980 to December 1983, (c-f) annual precipitation, temperature, total cloud 
cover, and relative humidity, 1979-1992. Solid lines show statistically simulated results, dotted lines represent 
observed data, and shaded lines are directly interpolated reanalyses without statistical modeling. The 
correlation coefficient r is shown in the top left comer of each graph (see text). 

modeling, the solid curves represent statistically simulated 
results, and the dotted curves show observational data. The 

correlation coefficient r is shown in the top left comer of each 
graph. 

The station is generally characterized by an exceptionally 
high amount of observed precipitation (up to 49.00 mm/yr) 

which can naturally not be represented by the direct 
large-scale reanalysis precipitation (about 1300 mm/yr). 

In order to achieve the best fit, the statistical model finally 
selects three large-scale predictors for the prediction of local 
precipitation (Table 3). These can be found in the upper right 
part of Table 3 together with their relative impacts in the final 

 21562202d, 1999, D
16, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/1999JD
900264 by M

PI 348 M
eteorology, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



19,076 REICHERT ET AL.: PALEOCLIMATIC PROXY RECORDS FROM GCM OUTPUT 

Table 3. Predictors Selected by the Statistical Model and 
Percentage of Observed Variance Explained 

Local Temperature: 
Predictors and Relative 

Impact for Complete Years 
1979-1992 

Local Precipitation: 
Predictors and Relative 

Impact for Complete Years 
1979-1992 

temperature at 850 hPa 
relative impact 65 % 

seasonal cycle: cos(day) 
relative impact 25% 

relative humidity at 850 hPa 
relative impact 10% 

vertical velocity at 850 hPa 
relative impact 60% 

vorticity at 700 hPa 
relative impact 20% 

zonal wind at 700 hPa 

relative impact 20% 

Total Explained Variance for 

Local Temperature 
Daily Monthly Annual 

Total Explained Variance for 
Local Precipitation 
Daily Monthly Annual 

Year (91.3%) 85.0% 91.9% 47.7% 81.7% 88.6% 
JJA 69.8% 79.4% 77.5% 29.6% 57.2% 46.0% 

DJF 71.7% 93.5% 95.7% 59.9% 90.1% 94.0% 

The predictors are shown with their individual relative impact in 
the final equations for local temperature and local precipitation for 
station Kvamskogen using daily data for complete years within the 
period 1979-1992 (see section 4.1 for further explanation of the 
"seasonal cycle" predictor). The bottom part of the table shows the 
percentage of observed variance explained by the statistical model 
for the whole year, June, July, and August (JJA) only, and 
December, January, and February (DJF) only each for original daily 
data, monthly-averaged output of the statistical model after 
removing the seasonal cycle, and yearly means of statistical model 
output (which means seasonally averaged output in the case of JJA 
and DJF). 

equations. The predictors enter the equations such that 
(1) negative vertical velocity (upward air movement at 850 
hPa, relative impact 60%), (2) positive u-wind velocity 
(westerly winds at 700 hPa, relative impact 20%) and 
(3) positive vorticity (cyclonic movement at 700 hPa, relative 
impact 20%) on the large scale determine an increase of local 
precipitation, which for this station is strongly orographically 
enhanced. Using these three predictors exclusively, the 
explained variance (r 2) between the statistical simulation and 
the observed record of precipitation is 47.7% for daily data 
for the complete years 1979-1992 (bottom right part of Table 
3). 

This value can be further analyzed by investigating the skill 
of the model for each season individually. The explained 
variance for daily data in summer (June, July, August (JJA); 
Table 3, bottom right) is rather low (29.6%) compared to the 
winter (December, January, February (DJF)) value (59.9%). 
Also monthly means (57.2% compared to 90.1% in winter) 
and seasonal means (46.0% compared to 94.0% in winter) 
remain low. The reason for that might be that the amount of 
precipitation in summer is smaller (see Figure 4a) and less 
strongly coupled to atmospheric dynamics than in winter. In 
summer we believe that convective precipitation has a much 
higher impact, which weakens the skill of the statistical model 
using large-scale predictors as input. Figure 3a shows an 

example of daily precipitation in February/March 1980 for 
periods where the model does not produce enough 
precipitation (e.g., around March 13) and periods where 
actually nonexistent precipitation is generated (e.g., within the 
period February 17 to February 27 no precipitation was 
observed). However, the explained variance for monthly 
means for the complete year is as high as 81.7% (Figure 3b 
for 1980-1983); annual means (Figure 3c) even show a 
remarkable explained variance of 88.6%. This means that 
monthly and annual mean precipitation is realistically 
simulated by the statistical model (Figure 3c) on the basis of 
daily input values. 

Further experiments with monthly and yeafly values show 
that daily values are required to obtain such robust and 
physically reasonable couplings. Local climatic conditions 
can be modeled well using daily large-scale predictors. 
However, the orographic effect plays an important role and is 
perhaps the easiest to determine, especially in wintertime with 
pronounced synoptic flow. 

Figures 3d, 3e, and 3f show the model results for annual 
means of temperature, cloud cover, and relative humidity, 
respectively. The predictors chosen for local temperature 
(Table 3, upper left) are large-scale temperature at 850 hPa 
with the highest relative impact (65%), followed by the 
seasonal cycle (25%; see section 4.1 concerning "seasonal 
cycle: cos(day)") and relative humidity at 850 hPa (10%). The 
explained variance of 91.3% for daily data (Table 3, bottom 
left) is not representative because it includes the seasonal 
cycle. However, monthly data can explain 85% of the 
variance after removing the seasonal cycle, and yearly data 
can explain as much as 91.9%. The explained variance of 
annual total cloud cover (67.2%; Figure 3e) is also improved 
compared to the direct large-scale reanalyses. The same is true 
for annual relative humidity (Figure 3f) compared to 
reanalyses relative humidity on 925 hPa. 

Figure 4 shows the climatologies for the period 1979-1992 
of precipitation (Figure 4a) and temperature (Figure 4b) each 
for observed station data, statistical simulations, and directly 
interpolated reanalysis output. Although we do not have a 
perfect match between observed data and simulated output for 
precipitation (Figure 4a), it is clearly visible how the seasonal 
cycle is enhanced and the climatology is improved compared 
to direct reanalysis output. This is also true for temperature 
(Figure 4b). The seasonal cycle of large-scale temperature is 
modified and matches the observed one nearly perfectly, also 
demonstrating the qualitative influence of the "seasonal 
cycle" predictor (see section 4.1 ). 

This is just one example out of all stations used in this 
study. The following section provides information on the skill 
of the model for other stations within the area of 

investigation. 

5.3. Spatial Homogeneity of the Statistical Model 

The statistical model may use different optimized 
predictors with varying relative impacts for the same observed 
variable at each station due to its local setting. This is 
demonstrated for 17 stations in the area of Nigardsbreen 
glacier, Norway. Figure 5 shows the explained variances for 
observed local temperature (Figure 5a) and observed local 
precipitation (Figure 5b) for each operational weather station 
(see Figure 2 for locations; five stations did not cover the 
ERA time period and are not used, see section 4.2). They 
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Figure 4. Climatology for the period 1979-1992 of (a) precipitation and (b) temperature for observed station 
data (dotted lines), statistically simulated output (solid lines) and direct reanalysis output (shaded lines) for 
station Kvamskogen. The correlation coefficient r is shown in the top left comer of each graph. 
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Figure 5. Explained variances of the statistical model for (a) observed local temperature and (b) observed 
local precipitation for each weather station (see Figure 2 for location of stations). The explained variances are 
split among the large-scale predictors from ECMWF reanalyses chosen by the model. 
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were calculated using monthly-averaged values after 
removing the seasonal cycle, and they are split among the 
large-scale predictors from ECMWF reanalyses chosen by the 
statistical model. Also shown is the average of explained 
variance over all stations and its composition. 

In general, spatial homogeneity for temperature (Figure 5a) 
is much higher than for precipitation, as can be expected. The 
dominant predictors for local temperature are large-scale 
temperature at 850 hPa, the seasonal cycle (see section 4.1 
conceming "seasonal cycle: cos(day)"), and relative humidity 
at 850 hPa with an averaged explained variance of 42.7%, 
22.6%, and 8.7%, respectively. Although large-scale 
temperature has a dominant influence in the equations, its 
monthly climatology is modified by the "seasonal cycle" 
predictor as has already been mentioned in section 5.2 (Figure 
4b). Without including this predictor, the simulation changes 
qualitatively, and the explained variance decreases 
significantly. With the daily large-scale temperature predictor 
alone we would not achieve the maximum skill of the 

statistical model. On average, 78.6% of observed local 
temperature could be explained by the statistical model for all 
stations. 

The explained variance and composition of predictors for 
local precipitation (Figure 5b) varies significantly for each 
station. The predictors selected by the statistical model and 
their impact can be completely different even for stations that 
are located close to each other (see, e.g., stations 04 and 05). 
This is due to their local setting, which is crucial for 
precipitation. With respect to total explained variance, we 
may divide the stations into three groups. Stations 18, 14, 06, 
17, and 19 belong to the first group with the highest total 
explained variance (more than 80% on average). These 
stations are mainly located in the west of the area to be 
investigated (see Figure 2). The most dominant predictor is by 
far vertical velocity at 850 hPa, explaining 61.6% of observed 
variance on average. Remarkably, for stations 18 and 06 it is 
also the only predictor selected by the statistical model. This 
demonstrates the strong coupling of local precipitation to 
atmospheric dynamics. Further predictors with smaller 
influence on particular stations are divergence, vorticity, and 
wind velocity at varying pressure levels. The second group 
consists of stations 12, 04, 11, 07, 01, 13, 05, 20, and 10 with 
total explained variances that are close to the average of 
65.2% over all stations. These stations are mainly located in 
the middle and in the north of the area. Besides vertical 

velocity at 850 hPa, v wind velocity at 850 hPa also plays an 
important rule for some of these stations. For stations 12 and 
01, as much as 30% and 24% of variance, respectively, can be 
explained by this predictor; westerly winds are associated 
with an increase of precipitation here. For the third group of 
stations, the total explained variances of only 44%, 41%, and 
36% (stations 09, 16, and 15, respectively) are far below the 
average over all stations. There is no obvious reason for that; 
either data quality of measurements has an influence here, or 
it is just impossible to find better large-scale predictors for 
these local settings out of the set of 76 variables from 
ECMWF reanalyses using the linear regression model. 

Besides giving insights into spatial homogeneity of the 
statistical model, this section demonstrates the need for the 
statistical modeling procedure itself. This also becomes clear 
by the following experiments: We run the statistical model 
using additional potential surface predictors including large- 
scale and convective precipitation from ECMWF reanalyses 

(model version 1, see section 5.1). Then, the precipitation 
predictors are either not even selected by the model for the 
simulation of local precipitation (true for most stations), or 
the impact of these predictors is extremely small. That means 
that just by using the direct grid point output of reanalyses 
(this is, of course, also true for the output of GCM 
experiments), it is impossible to have a realistic picture of 
local precipitation. For the simulation of local temperatures, 
the situation is less extreme, but they are also improved 
qualitatively compared to the direct grid point output of a 
model (especially the seasonal cycle; see section 5.2). This is 
due to the inclusion of additional predictors and the 
adaptation to the local setting of a station including the 
orography. For the simulation of a valley glacier, for example, 
both local temperature (including seasonality) and 
precipitation are crucial, and the statistical . modeling 
procedure as proposed here is therefore essential. 

It should be mentioned that we do not claim that this 

approach will work equally well in any other part of the 
world. However, we have carded out further experiments for 
an area surrounding an Austrian valley glacier in the Alps 
(Hintereisfemer; 46.80øN, 10.93øE) with comparably good 
results, and we have planned further experiments for other 
locations. 

5.4. Model Runs for Specific Seasons of the Year 

Is it possible that different predictors may be required for 
different seasons of the year? The simulation of proxy 
indicators may require realistic local output with a particular 
interest in specific seasons (e.g., the growing season of trees 
or the melting period of glaciers). In order to further 
investigate the seasonal performance of the statistical model, 
we carried out experiments allowing daily data for single 
seasons only as input (Table 4). Compared to the model with 
full year daily input (Table 3), the composition of predictors 
and their individual impacts may change. 

1. With regard to JJA temperatures, if we restrict input data 
to daily values of JJA (Table 4) then local JJA temperatures 
are determined by large-scale zonal wind at 850 hPa (relative 
impact 17%) and vertical velocity at 500 hPa (relative impact 
12%), in addition to 850 hPa temperature (relative impact 
71%). Here, the daily, monthly, and seasonal explained 
variance for JJA is 81%, 91.8%, and 89.1%, respectively 
(bottom part of Table 4). Compared to the seasonal 
performance with full year input (69.8%, 79.4%, and 77.5%; 
Table 3, bottom part) the explained variances improve 
significantly and the predictors have changed. 

2. With regard to DJF temperatures, the explained variance 
for Northem Hemispheric winter (75.8% in Table 4 with daily 
DJF input data only) is slightly improved compared to the full 
year input (71.7% in Table 3), whereas monthly and seasonal 
values remain nearly constant. This means that the large-scale 
flow patterns in wintertime are already reasonably well 
determined by the full year input data. 

For the prediction of local precipitation, experiments with 
daily data for specific seasons are also carded out. Although 
the complete set of potential large-scale predictors (Table 1, 
predictors marked with asterisks) is offered to the statistical 
model (as usual), the composition of selected predictors for 
summer (JJA) precipitation remains the same as for the full 
year input (Table 3). Also, the total explained variance of 
29.7% for daily data remains almost constant (compared to 
29.6% in Table 3), demonstrating that even the season- 
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Table 4. Predictors Selected and Performance of the 

Season-Specific Statistical Model for Local Temperature 

Local Temperature: 
Predictors and Relative 

Impact for JJA Only 
1979-1992 

Local Temperature: 
Predictors and Relative 

Impact for DJF Only 
1979-1992 

temperature at 850 hPa 
relative impact 71% 

zonal wind at 850hPa 

relative impact 17% 

vertical velocity at 500 hPa 
relative impact 12% 

temperature at 850 hPa 
relative impact 60% 

relative humidity at 850 hPa 
relative impact 24% 

zonal wind at 500 hPa 

relative impact 16% 

Total Explained Variance for 
Local Temperature, JJA Only 

Total Explained Variance for 

Local Temperature, DJF Only 
Daily Monthly Annual Daily Monthly Annual 

81.0% 91.8% 89.1% 75.8% 94.5% 95.6% 

The model was developed with daily reanalyses and weather 
station data using JJA values only and DJF values only within the 
period 1979-1992 (see text and Table 3 for further explanations). 
The bottom part of the table shows the percentage of observed 
variance explained by the statistical model for JJA only and DJF 
only each for original daily data, monthly averaged output of the 
statistical model after removing the seasonal cycle, and seasonal 
means of statistical model output. 

specific statistical model is not able to improve the relations 
between large-scale variables and local summer precipitation. 
As mentioned in section 5.2, we believe that this is due to the 
relatively large contribution of convective precipitation in 
summer, which weakens the skill of the statistical model 
using large-scale predictors as input. For winter (DJF) 
precipitation the statistical model again selects vertical 
velocity at 850 hPa with a relative impact of 66% (compared 
to 60% for the full year input, Table 3). In contrast to the full 
year model run, it also selects vorticity at 850 hPa (relative 
impact 19%) and temperature at 400 hPa (relative impact 
15%). However, in spite of the fact that the predictors are 
modified to maximize the skill of the model in winter, the 

total explained variance is not significantly improved; it 
remains at 60.8% for daily data (compared to 59.9%, Table 
3). That means that for our experiments with our set of 
potential predictors, the quality of simulations for local 
precipitation is not seasonally dependent as for local 
temperature. Predictors selected for the full year already seem 
to be optimized even for the simulation of individual seasons. 

We may conclude that for selected observed variables 
(valid for local temperature but not for local precipitation), 
the capability to simulate individual seasons can be improved 
significantly by developing a season-specific statistical 
model. 

5.5. Model Validation Experiments 

Does the model work on independent data, and is it 
transferable to other time periods with different climatic 
conditions? In order to address these questions, two further 
experiments are carried out. 

In the first experiment we develop the model for the 
second half of the ECMWF reanalyses time period 
(1985-1992) only (Figure 6). For the purpose of validation, 
the statistical relationships obtained are then applied to an 
independent validation sample, in this case the first half of the 
reanalyses time period (1979-1984). The annual means of 
precipitation and temperature for this experiment are shown 
in Figures 6a and 6b. For temperature (Figure 6b), statistical 
simulations and observed data are of the same order of 

magnitude for the developmental and validation sample (also 
comparable to Figure 3d using the full time period 1979-1992 
for development). For precipitation (Figure 6a) the model 
shows a slightly enhanced output in the validation sample. 
The tendency to produce too much precipitation in this period 
can already be seen in the experiment using the full time 
period 1979-1992 for development (Figure 3c) but is 
enhanced here. However, the model is able to simulate the 
local variables for this independent validation sample rather 
realistically, although it is not developed for this time period 
(i.e., it does not use any local observations in the period 
1979-1984 for fitting). 

The second experiment addresses the question of whether 
the model can produce realistic output for events which differ 
from events the model is actually developed for. These events 
would occur in slightly changed climatic conditions (which 
are not fundamentally different in their large-scale flow 
properties, see below and section 6). If the model is 
developed using present-day climatic conditions (represented 
by ECMWF reanalyses), is it then applicable to GCM output 
for preindustrial times? The statistical distribution of daily 
local temperatures for station Kvamskogen after statistical 
modeling of ECMWF reanalyses for the period 1979-1992 is 
shown in Figure 7. The standard experiment (Figure 7a) 
includes all temperature events occurring for the development 
of the model. For the validation experiment (Figure 7b), 
events with temperatures less than -5øC are excluded prior to 
model development; afterward the statistical relationships are 
calculated the same way. Although this model is not 
developed for these events it has still realistically simulated 
them, which can be clearly seen in the distribution (Figure 7b, 
top graph) and the time series (Figure 7b, bottom graph) of 
temperatures. The differences between the standard and 
validation experiment (Figure 7a and 7b respectively) are 
reasonably small. This shows that, as long as the extreme 
events do not correspond to fundamentally different (and 
possibly nonlinear) weather regimes, then the statistical model 
is still able to simulate them. This is to a large extent true for 
the events of the preindustrial output of the GCM (see section 
6) which will be applied below. Here, the general coupling 
between the large-scale flow and local weather parameters 
deduced from present-day climate is to a great extent 
maintained. 

The two described experiments demonstrate the 
applicability of the statistical model to independent data sets, 
and they also show that we may simulate events which have 
not been visited in the developmental time period as far as the 
events do not correspond to fundamentally different (and 
possibly nonlinear) weather regimes. 

5.6. Impact of Spatiotemporal Resolution of Predictors 

Our intention is to produce reliable local monthly or annual 
mean output from reanalyses and GCMs comparable to 
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Figure 6. Validation experiment for station Kvamskogen (a) for local annual precipitation and (b) for local 
annual temperature. The model is developed for the 1985-1992 period only (developmental sample). The 
statistical relationships obtained are then applied to independent reanalyses for 1979-1984 (validation sample). 
The solid and dashed lines show the statistical model output for the developmental and validation sample, 
respectively, dotted lines represent observed data, and shaded lines are directly interpolated reanalyses without 
statistical modeling. See Figures 3c and 3d (using full time period 1979-1992 for development) for 
comparison. 

Statistical Distribution of Daily Local Temperatures 
Station Kvamskogen, Stat. Modeled ECMWF Re-Analyses 1979-1992 

2OO 

150 

100 

50 

a) Standard: All Temp. Included 
I ' I ' ' I ' I ' I ' I ' I 

T<-5.0 

-15 -10 -5 0 5 10 15 20 

Temperature (0.5øC bin width) 

2OO 

150 

IO0 

5O 

0 

b) Validation- T <-5øC Left out 
I ' I ' ' -I ' I ' I ' I ' I 

T<-5.0 

-15 -10 -5 0 5 10 15 20 

Temperature (0.5øC bin width) 

2O 

15 

10 

5 

0 

-5 

-10 

-15 

1980 1982 1984 1986 1988 1990 1992 

Year 

"II 1 11 I' l-r,, 'r ,''_ 
_ 

_ 

1980 1982 1984 1986 1988 1990 1992 

Year 

Figure 7. Statistical distribution (top graph) of daily local temperatures for station Kvamskogen after 
statistical modeling for the period 1979-1992 and time series of daily temperatures (bottom graph) for (a) all 
temperature events included for the development of the model and (b) events with temperatures less than -5øC 
excluded from model development. Although the model in Figure 7b is not developed for events < -5øC it still 
has realistically simulated them; the differences in distribution between Figures 7a and 7b are reasonably 
small. This shows that, as long as the extreme events do not correspond to a fundamentally different weather 
regime, then the statistical model is still able to simulate them. 
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corresponding local weather station data. Although we do not 
aim to produce perfect predictions on a daily basis, it tums 
out that our model requires daily predictor data as input in 
order to achieve the statistically closest and most robust 
relationships. Consequently, the output can best be averaged 
to monthly or annual means after the statistical calculations 
have been carried out using daily predictor data. 

Monthly means as input are tested as well, but the results 
are less good. The model sometimes attempts to use 
near-collinear predictors for least squares estimation, which 
particularly becomes a problem when being applied to 
independent data. Furthermore, the actual physical relations 
between large-scale flow and local variables cannot be 
represented as satisfactorily as for daily data as input; a lot of 
information is averaged out. This is especially important for 
the simulation of local precipitation; the model has no choice 
other than to select predictors which represent much less 
meaningful physical relations to the large-scale flow 
compared to daily data as input. 

This emphasizes the role of synoptic timescale variability 
in the close relations between local weather and large-scale 
circulation patterns. Averaging the predictors means that this 
information is partly removed and the correlation therefore 
weakens. 

The impact of spatial resolution of predictors is 
investigated, producing statistical model output both using 
large-scale predictors (see section 4.1 for definition) from the 
interpolated T30 data set (~ 3.8 ø x 3.8 ø) and using original 
reanalyses at T106 resolution (~ 1.1ø x 1.1 o) for comparison. 
Although the interpolated reanalyses would maybe not be 
completely similar to the output of an imaginable reanalyses 
project using T30 resolution from the beginning, they are 
suitable to give us information on the impact of model 
resolution. It is found that summer temperatures (JJA) are 
most sensitive. For the example given in Table 3, the 
explained variance of monthly data for JJA (seasonal cycle 
removed) is increased from 79.4% (T30 resolution) to 84.5% 
(T106 resolution); annual data improve from 77.5% (T30 
resolution) to 83.3% (T106 resolution). The sensitivity for 
local precipitation is of the same order. Monthly means for 
JJA increase from 57.2% (Table 3) to 62.1%, annual means 
from 46.0% to 51.7%. The improvements are not more drastic 
since even at T106 resolution, the predictors still represent the 
large-scale flow which is already well represented at T30 
resolution for the area to be investigated. 

In spite of these improvements, we may conclude that the 
overall ability to produce satisfactory statistical model output 
is already given using T30 predictor resolution, which is also 
the resolution of the ECHAM4 GCM runs which will be used 

below. 

6. Application to ECHAM4 GCM: Control and 
Preindustrial Run 

The statistical relationships derived from ECMWF 
reanalyses and local station data are applied to the output of 
the ECHAM4 general circulation model coupled to a mixed 
layer ocean (ECHAM4/MLO) developed at the Max-Planck- 
Institut for Meteorologie (MPI) and the Deutsches 
Klimarechenzentrum (DKRZ) in Hamburg [Roeckner et al., 
1996; Roeckner, 1997; Roeckner et al., 1999]. We use a long 
integration of a control run and a run with constant 
preindustrial greenhouse gas concentrations for our 

experiments. The control experiment of the 19-layer 
ECHAM4/MLO GCM has been performed for 590 years at 
T30 (~ 3.8 ø x 3.8 ø) resolution. The concentrations of carbon 
dioxide, methane, and nitrous oxide are fixed at the observed 
1990 values [Intergovernmental Panel on Climate Change 
(IPCC), 1990, Table 2.5]. A 100-year equilibrium run with 
constant preindustrial greenhouse gas concentrations [IPCC, 
1995] has also been performed. The global average surface air 
temperature for the preindustfial run in equilibrium is 1.0øC 
lower than for the control run. 

The daily large-scale output of these models for the area of 
Nigardsbreen glacier, Norway, is applied to the statistical 
relationships obtained as described above. As an example, we 
show the statistically downscaled and yearly-averaged GCM 
output of surface air temperature deviations for station Ona II 
(Figure 8). This station is chosen because we are able to 
compare the variability of simulated data to a long 
instrumental observed temperature record for the period 
1868-1955 which is available from the Global Historical 

Climatology Network (GHCN) temperature data base 
[Peterson and Vose, 1997]. Additionally, we include weather 
station data for the period 1979-1993 obtained from the 
Swedish Meteorological and Hydrological Institute (SMHI) 
for this station. We have subtracted the mean value of the 

latter data both from GHCN and SMHI data. The middle plot 
of Figure 8 shows the observed temperature deviations at 
station Ona II. The left and fight plots of Figure 8 represent 
statistically corrected GCM surface air temperature output 
with constant preindustrial greenhouse gas concentrations and 
statistically corrected GCM output for 590 years of the 
control run, respectively. 

In general, we assume that the statistical relationships 
(established by the linear regression model for present-day 
climate on a daily basis) between large-scale circulation 
patterns and local parameters are maintained when applying 
the statistical model to preindustrial times. A comparison of 
circulation patterns of the preindustrial GCM run with the 
control run supports this assumption. However, this might not 
be valid for climates with major changes in the general 
circulation (e.g., simulation for Last Glacial Maximum), for 
which the composition and impact of large-scale predictors 
might differ significantly. 

The first striking feature is the mean temperature 
difference of about 0.8øC between the preindustrial GCM run 
and the control run, which is comparable to the observed 
temperature increase over the last 125 years for this station. 
This is due to the realistic large-scale GCM output itself 
within this region, but it also shows that the statistical model 
(besides improving the variability of local records) is capable 
of maintaining mean large-scale temperature changes due to 
different climatic conditions for this location. 

More important for the performance of the statistical 
model is that the annual variability in GCM output (both 
control and preindustrial run) closely resembles the observed 
one. The standard deviation for the 100-year preindustrial run 
and the 590-year control run is 0.49 and 0.53, respectively, 
compared to 0.57 for the observed temperature record. The 
dynamical GCM output in combination with the statistical 
modeling procedure therefore seems to be a realistic 
simulation. However, when comparing a GCM simulation in 
equilibrium state (constant greenhouse gas concentrations) 
with observations, it is, of course, possible that the variability 
is affected by the fact that greenhouse gases are continuously 
increasing. Experiments with transient coupled GCM runs 
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Figure 8. Application of the statistical model to GCM output (ECHAM4 T30 L19 Mixed Layer Ocean) for 
station Ona II. Thin lines are annual mean temperature deviations; thick lines are 1 O-year running means. The 
left plot shows statistically corrected local output from the equilibrium GCM run with constant preindustrial 
[IPCC, 1995] greenhouse gas concentrations; the fight plot represents the 590-year control run of the same 
model with modem greenhouse gas concentrations. For comparison, observed temperature deviations for 
Station Ona II are shown in the middle plot. 

(ECHAM4/OPYC3) will therefore also be performed in 
future. 

The 10-year running means of the GCM simulations show 
a comparable or even slightly higher variability than in the 
relatively short observational record of 125 years. Pronounced 
lower-frequency fluctuations are clearly simulated by the 
downscaled GCM control experiment. 

We may conclude that the statistically modeled dynamical 
GCM output can realistically simulate both the patterns of 
observed variability on the annual to decadal scale as well as 
temperature changes due to different climatic scenarios. 

7. Conclusions 

Local output for temperature, precipitation, and other 
parameters has been produced by a general circulation model 
in combination with a statistical downscaling model. Stable 
and physically reasonable relationships for statistical model 
development were obtained using large-scale predictors from 
daily ECMWF reanalyses and local surface observations for 
the area of Nigardsbreen glacier, Norway. Near-surface 
predictors were excluded in order to be able to get stable 
results even when applying the model to various GCMs which 

might differ in the underlying topography and in the 
representation of surface processes. Investigating the spatial 
homogeneity of the model showed that the composition of 
predictors and their relative impact varies significantly for 
individual stations within the area to be investigated due to 
their local setting. Analyzing single seasons individually, it 
became clear that for some local surface variables it is useful 

to develop a specific set of predictors for seasons which 
might be most relevant for a specific proxy indicator (e.g., for 
the growing season of trees). Daily predictor data were 
required in order to achieve statistically the most stable and 
physically the most reasonable relationships. Satisfactory 
results for the model could be achieved using T30 resolution 
(~ 3.8 ø x 3.8 ø) predictor data. We validated the model using 
separate developmental and validation intervals for the 
reanalyses time period and we carried out a validation 
experiment with a restricted predictor data set. The method 
has been applied to a long control integration of the 
ECHAM4 / Mixed Layer Ocean GCM and to an equilibrium 
run with preindustrial greenhouse gas forcing. The output has 
been compared to patterns of observed station data in the area 
of Nigardsbreen glacier, Norway, for the period 1868-1993. 
Patterns of observed variability on the annual to decadal scale 

 21562202d, 1999, D
16, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/1999JD
900264 by M

PI 348 M
eteorology, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



REICHERT ET AL.: PALEOCLIMATIC PROXY RECORDS FROM GCM OU2•UT 19,083 

and temperature changes due to the preindustrial climatic 
scenario have been realistically simulated for this location. 

The proposed dynamical-statistical modeling approach 
could help to improve a systematic interpretation of 
paleoclimatic proxy records and model-data intercomparisons 
for past climatic scenarios. A simulation of the growth of 
trees and the response of valley glaciers to specific climatic 
conditions is in preparation. 

Acknowledgments. The authors would like to thank M. 
Giorgetta, M. Stendel, E. Roeckner and B. Machenhauer for helpful 
comments and discussions. The ECMWF provided the reanalyzed 
data set, the SMHI contributed operational weather station data, and 
NOAA made GHCN data available. The study was supported by the 
European Commission under contract ENV4-CT95-0072. The model 
simulations were performed at the Deutsches Klimarechenzentrum 
(DKRZ) in Hamburg. 

References 

Barnett, T.P., B. D. Santer, P. D. Jones, R. S. Bradley, and K. R. 
Briffa, Estimates of low frequency natural variability in near- 
surface air temperature, Holocene, 6, 255-263, 1996. 

Bengtsson, L., The weather forecast, Pure Appl. Geophys., 119, 515- 
537, 1981. 

Bergeron, T0, Richtlinien einer dynamischen Klimatologie, Meteorol. 
Z., 47, 246-262, 1930. (Engl. transl., Ground plan of a dynamic 
climatology, Mort. Weather Rev., 59, 219-235, 1931.) 

Bradley, R. S., Are there optimum sites for global paleotemperature 
reconstruction?, in Climatic Variations and Forcing Mechanisms 
of the Last 2000 Years, edited by P. D. Jones, R. S. Bradley and J. 
Jouzel, NATO ASI Ser., Ser. 1, 41,603-624, 1996. 

Bradley, R. S., and P. D. Jones, "Little Ice Age" summer temperature 
variations: Their nature and relevance to recent global warming 
trends, Holocene, 3, 367-376, 1993. 

Briffa, K. R., P. D. Jones, T. S. Bartholin, D. Eckstein, F. H. 
Schweingruber, W. Karlen, P. Zetterberg, and M. Eronen, 
Fennoscandian summers from AD 500: Temperature changes on 
short and long timescales, Clim. Dyn., 7, 111-119, 1992. 

Cubasch, U., H. von Storch, J. Waszkewitz, and E. Zorita, Estimates 
of climate change in southern Europe derived from dynamical 
climate model output, Clim. Res., 7, 129-149, 1996. 

Dunbar, R. B., G. M. Wellington, M. W. Colgan, and P. W. Glynn, 
Eastern Pacific sea surface temperature since 1600 A.D., The 
d•80 record of climate variability in the Galapagos corals, 
Paleoceanography, 9, 291-315, 1994. 

George, J. J. (Ed.), Weather Forecasting for Aeronautics, pp. 407- 
415, Academic, San Diego, Calif., 1960. 

Gibson, J. K., P. Kfi. llberg, S. Uppala, A. Nomura, A. Hernandez, and 
E. Serrano, ERA Description, ECMWF Re-Anal. Proj. Rep. Ser., 
Rep. 1, Eur. Cent. for Medium-Range Weather Forecasts, 
Reading, England, 1997. 

Groveman, B. S., and H. E. Landsberg, Reconstruction of Northern 
Hemisphere temperature: 1579-1880, in Meteorol. Program 
Publ., vol. 79-181, Univ. of Md., College Park, 1979. 

Heyen, H., E. Zorita, and H. von Storch, Statistical downscaling of 
monthly mean North Atlantic air-pressure to sea level anomalies 
in the Baltic Sea, Tellus, Ser. A, 48, 312-323, 1996. 

Intergovernmental Panel on Climate Change (IPCC), Climate 
Change, The IPCC Scientific Assessment, edited by J. T. 
Houghton et al., Cambridge Univ. Press, New York, 1990. 

IPCC, Climate Change 1994, Radiative Forcing of Climate Change, 
edited by J. T. Houghton et al., p. 80/194, Cambridge Univ. Press, 
New York, 1995. 

Jones, P. D., and R. S. Bradley, Climatic variations in the longest 
instrumental records, in Climate Since A.D. 1500, edited by R. S. 
Bradley and P. D. Jones, pp. 246-268, Routledge, New York, 
1992. 

Karl, T. R., W.-C. Wang, M. E. Schlesinger, R. W. Knight, and D. 
Portman, A method of relating general circulation model 
simulated climate to the observed local climate, I, Seasonal 
statistics, J. Clim., 3, 1053-1079, 1990. 

Kim, J.-W., J.-T. Chang, N. L. Baker, D. S. Wilks, and W. L. Gates, 
The statistical problem of climate inversion: Determination of the 
relationship between local and large-scale climate, Mon. Weather 
Rev., 112, 2069-2077, 1984. 

Landsberg, H. E., B. S. Groveman, and I. M. Hakkarinen, A simple 
method for approximating the annual temperature of the Northern 
Hemisphere, Geophys. Res. Lett., 5, 505-506, 1978. 

Manabe, S., and R. J. Stouffer, Low-frequency variability of surface 
air temperature in a 1000-year integration of a coupled 
atmosphere-ocean-land surface model, J. Clim., 9, 376-393, 1996. 

Mann, M. E., R. S. Bradley, and M. K. Hughes, Global-scale 
temperature patterns and climate forcing over the past six 
centuries, Nature, 392,779-787, 1998. 

Martin E., B. Timbal, and E. Brun, Downscaling of general 
circulation model outputs - Simulation of the snow climatology of 
the French Alps and sensitivity to climate change, Clim. Dyn., 13, 
45-56, 1996. 

Oerlemans, J., Climate sensitivity of glaciers in southern Norway: 
Application of an energy-balance model to Nigardsbreen, 
Helstugubreen and Alfotbreen, J. Glaciol., 38, 223-232, 1992. 

Oerlemans, J., Modelling the response of valley glaciers to climatic 
change, in Physics and Chemistry of the Atmospheres of the Earth 
and Other Objects of the Solar System, edited by C. Boutron, Eur. 
Res. Course Atmos., vol.2, pp. 91-123, Les Editions de Physique, 
Les Ulis, France, 1996. 

Oerlemans, J., A flow-line model for Nigardsbreen: Projection of 
future glacier length based on dynamic calibration with the 
historic record, Ann. Glaciol., 24, 382-389, 1997. 

Paterson, W. S. B. (Ed.), The Physics of Glaciers, 2nd ed., 
Pergamon, New York, 1981. 

Peterson, T. C., and R. S. Vose, An overview of the Global Historical 
Climatology Network temperature data base, Bull. Am. Meteorol. 
Soc., 78, 2837-2849, 1997. 

Pfister, C., Monthly temperature and precipitation in central Europe 
from 1525-1979: Quantifying documentary evidence on weather 
and its effects, in Climate Since A.D. 1500, edited by R. S. 
Bradley and P. D. Jones, pp. 118-142, Routledge, New York, 
1992. 

Reichert, B. K., L. Bengtsson, and O. •kesson, A statistical- 
dynamical modeling approach for the simulation of local paleo 
proxy records using GCM output, Rep. 274, Max-Planck-Inst. fOr 
Meteorol., Hamburg, Germany, 1998. 

Roeckner, E., L. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. 
Dumenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 
The atmospheric general circulation model ECHAM-4: Model 
description and simulation of present-day climate, Rep. 218, Max- 
Planck-Inst. fOr Meteorol., Hamburg, Germany, 1996. 

Roeckner, E., Climate sensitivity experiments with the 
MPI/ECHAM4 model coupled to a slab ocean (abstract), in 
Euroclivar Workshop on Cloud Feedbacks and Climate Change, 
edited by C. A. Senior and J. F. B. Mitchell, pp. 20, Hadley Cent. 
for Clim. Predict. and Res., Bracknell, England, 1997. 

Roeckner, E., Bengtsson, L., Feichter, J. Lelieveld, J. and H. Rodhe, 
Transient climate change simulations with a coupled atmosphere- 
ocean GCM including the tropospheric sulfur cycle, J. Clim., in 
press, 1999. 

Stendel, M., and K. Arpe, Evaluation of the Hydrological Cycle in 
Re-Analysis and Observations, ECMWF Re-Analysis Validation 
Reports - Part 1, ECMWF Re-Anal. Proj. Rep. Set., Rep. 6, Eur. 
Cent. for Medium-Range Weather Forecasts, Reading, England, 
1997. 

Thompson, L. G., Ice core evidence from Peru and China, in Climate 
Since A.D. 1500, edited by R. S. Bradley, and P. D. Jones, pp. 
517-548, Routledge, New York, 1992. 

von Storch, H., and F. W. Zwiers (Eds.), Statistical Analysis in 
Climate Research, Cambridge Univ. Press, New York, 1999. 

von Storch, H., E. Zorita, and U. Cubasch, Downscaling of global 
climate change estimates to regional scales: An application to 
Iberian rainfall in wintertime, J. Clim., 6, 1161-1171, 1993. 

Wigley, T. M. L., P. D. Jones, K. R. Briffa, and G. Smith, Obtaining 
sub-grid-scale information from coarse-resolution general 
circulation model output, J. Geophys. Res., 95, 1943-1953, 1990. 

O. •kesson, Swedish Meteorological and Hydrological Institute, 
60176 Norrk6ping, Sweden. 

L. Bengtsson and B. K. Reichert, Max-Planck-Institut fOr 
Meteorologie, Bundesstrasse 55, 20146 Hamburg, Germany. (e-mail: 
bengtsson@dkrz.de; reichert@dkrz.de) 

(Received September 4, 1998; revised February 25, 1999; 
accepted April 14, 1999.) 

 21562202d, 1999, D
16, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/1999JD
900264 by M

PI 348 M
eteorology, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


